Sari la conținut

Enzima de conversie a angiotensinei 2

De la Wikipedia, enciclopedia liberă
ACE2
Structuri disponibile
PDBCăutare Ortholog: PDBe RCSB
Identificatori
AliasACE2, ECA2, enzima de conversie a angiotensinei 2, angiotensin convertază 2
Identificări externeOMIM: 300335 MGI: 1917258 HomoloGene: 41448 GeneCards: ACE2
Localizarea genei (om)
Cromozomul X
Cro.Cromozomul X[1]
Cromozomul X
Localizarea genomică a ACE2
Localizarea genomică a ACE2
BandăXp22.2Start15,561,033 pb[1]
Final15,602,148 pb[1]
Modelul de exprimare ARN


Mai multe date de referință pentru exprimare
Ortologi
SpecieOmȘoarece
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_021804
NM_001371415

NM_001130513
NM_027286

RefSeq (proteine)

NP_068576
NP_001358344

NP_001123985
NP_081562

Localizare (UCSC)Chr X: 15.56 – 15.6 Mbn/a
Căutare PubMed[2][3]
Wikidata
Vedeți/Editați OmVedeți/Editați Șoarece

Enzima de conversie a angiotensinei 2 (ECA2), cunoscută și sub numele de angiotensin convertază 2, este o carboxipeptidază care catalizează conversia angiotensinei I în angiotensina 1-9[4] și conversia angiotensinei II în angiotensina 1-7[5][6]. ECA2 controlează nivelurile plasmatice ale acestor hormoni, crescând sau scăzând local tensiunea arterială[1]. Enzima este prezentă în principal în celulele endoteliale vasculare ale inimii și ale rinichilor, dar și în mucoasa tractului respirator superior, a tractului digestiv inferior și la nivelul testiculelor [7][8]. ECA2 este exprimată la nivelul membranelor bazale ale celulelor endoteliale, acolo unde acționează ca un receptor pentru derivații angiotensinei din plasma sangvină. ECA2 nu este sensibilă la medicamentele inhibitoare ECA, care sunt utilizate pentru a trata hipertensiunea[9].

Receptorii ECA2 sunt punctul de intrare în celulele umane pentru unele coronavirusuri, inclusiv virusul SARS[10]. Glicoproteina S din învelișul acestuia leagă receptorul ECA2, ancorând astfel virusul pe membrana celulelor endoteliale. O serie de studii au identificat că punctul de intrare este același pentru SARS-CoV-2[11], virusul care cauzează COVID-19[12] [13] [14] [15].

Rol fiziologic

[modificare | modificare sursă]

Enzima de conversie a angiotensinei 2 (ECA2) funcționează în organism împreună cu renina și cu enzima de conversie a angiotensinei (ECA) pentru a scinda angiotensinogenul, un polipeptid de 452 de amino acizi produs la nivelul ficatului, în oligopeptide ce conțin între 7 și 10 amino acizi care servesc drept hormoni vasoconstrictori sau vasodilatatori.

Atunci când tensiunea sistolică din rinichi scade sub 90 mmHg, celulele juxtaglomerulare ale rinichiului eliberează renină în circulația sistemică. Această enzimă scindează cei 10 amino acizi amino-terminali ai angiotensinogenului care vor constitui angiotensina I (NH2 - Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu - COOH). Angiotensina I nu are un efect direct asupra tensiunii arteriale, însă în prezența ECA este convertită local la angiotensina II (NH2 - Asp-Arg-Val-Tyr-Ile-His-Pro-Phe - COOH). Acest hormon are acțiuni vasocontrictoare, stimulând contracția musculaturii netede din pereții vaselor de sânge, ceea ce are ca rezultat o creștere a tensiunii arteriale. Pentru a întrerupe stimulul vasoconstrictor ECA2 scindează angiotensina I în angiotensina 1-9 (NH2 - Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His - COOH) [4] și angiotensina II în angiotensina 1-7 (NH2 - Asp-Arg-Val-Tyr-Ile-His-Pro - COOH)[5], ultimul hormon având activitate vasodilatatoare.

Activitatea ECA2 diferă de cea a ECA prin faptul că îndepărtează un singur amino acid de la capătul carboxilic al peptidelor. De asemenea, spre deosebire de ECA, care este răspândită ubicuu în organism, ECA2 prezintă o localizare mult mai restrânsă[7][8].

Internalizarea virusului SARS-CoV-2

[modificare | modificare sursă]
  1. ^ a b c GRCh38: Ensembl ediția 89: ENSG00000130234 - Ensembl, mai 2017
  2. ^ „Referința PubMed pentru om:”. 
  3. ^ „Referința PubMed pentru șoarece:”. 
  4. ^ a b „A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9”. Circulation Research. 87 (5): E1–9. . doi:10.1161/01.res.87.5.e1. PMID 10969042. 
  5. ^ a b „ACE2 of the heart: From angiotensin I to angiotensin (1-7)”. Cardiovascular Research. 73 (3): 463–9. . doi:10.1016/j.cardiores.2006.09.006. PMID 17049503. 
  6. ^ „Angiotensin Converting Enzyme 2 Metabolizes and Partially Inactivates Pyrapelin-13 and Apelin-17: Physiological Effects in the Cardiovascular System”. Hypertension. 68 (2): 365–77. mai 2016. doi:10.1161/HYPERTENSIONAHA.115.06892. PMID 27217402. 
  7. ^ a b „Tissue expression of ACE2 - Summary - The Human Protein Atlas”. www.proteinatlas.org. Accesat în . 
  8. ^ a b „Angiotensin-converting enzyme 2--a new cardiac regulator”. The New England Journal of Medicine. 347 (22): 1795–7. . doi:10.1056/NEJMcibr022472. PMID 12456857. 
  9. ^ „ACEH/ACE2 is a novel mammalian metallocarboxypeptidase and a homologue of angiotensin-converting enzyme insensitive to ACE inhibitors”. Canadian Journal of Physiology and Pharmacology. 80 (4): 346–53. . doi:10.1139/y02-021. PMID 12025971. 
  10. ^ „A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury”. Nature Medicine. 11 (8): 875–9. . doi:10.1038/nm1267. PMID 16007097. 
  11. ^ „What are the official names of the disease and the virus that causes it?”. Q&A on coronaviruses. World Health Organization. Accesat în . 
  12. ^ Zhou, Peng; Yang, Xing-Lou (). „A Pneumonia Outbreak Associated With a New Coronavirus of Probable Bat Origin”. Nature. doi:10.1038/s41586-020-2012-7. PMID 32015507. 
  13. ^ Xintian, Xu; Chen, Ping (). „Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission”. Science China Life Sciences. doi:10.1007/s11427-020-1637-5. PMID 32009228. 
  14. ^ Lewis, Ricki. „COVID-19 Vaccine Will Close in on the Spikes”. DNA Science Blog. Public Library of Science. Arhivat din original la . Accesat în . 
  15. ^ Walls, Alexandra; et al. (). „Structure, function and antigenicity of the SARS-CoV-2 spike glycoprotein”. bioRxiv. doi:10.1101/2020.02.19.956581. Accesat în . 

Bibliografie suplimentară

[modificare | modificare sursă]
  • Turner AJ, Hiscox JA, Hooper NM (). „ACE2: from vasopeptidase to SARS virus receptor”. Trends in Pharmacological Sciences. 25 (6): 291–4. doi:10.1016/j.tips.2004.04.001. PMID 15165741. 
  • Katovich MJ, Grobe JL, Huentelman M, Raizada MK (mai 2005). „Angiotensin-converting enzyme 2 as a novel target for gene therapy for hypertension”. Experimental Physiology. 90 (3): 299–305. doi:10.1113/expphysiol.2004.028522. PMID 15640278. 
  • Ferrario CM, Trask AJ, Jessup JA (). „Advances in biochemical and functional roles of angiotensin-converting enzyme 2 and angiotensin-(1-7) in regulation of cardiovascular function”. American Journal of Physiology. Heart and Circulatory Physiology. 289 (6): H2281–90. doi:10.1152/ajpheart.00618.2005. PMID 16055515. 
  • Jia HP, Look DC, Hickey M, Shi L, Pewe L, Netland J, Farzan M, Wohlford-Lenane C, Perlman S, McCray PB (). „Infection of human airway epithelia by SARS coronavirus is associated with ACE2 expression and localization”Necesită înregistrare gratuită. Advances in Experimental Medicine and Biology. 581: 479–84. doi:10.1007/978-0-387-33012-9_85. ISBN 978-0-387-26202-4. PMID 17037581. 
  • Lazartigues E, Feng Y, Lavoie JL (). „The two fACEs of the tissue renin–angiotensin systems: implication in cardiovascular diseases”. Current Pharmaceutical Design. 13 (12): 1231–45. doi:10.2174/138161207780618911. PMID 17504232. 
  • Raizada MK, Ferreira AJ (). „ACE2: a new target for cardiovascular disease therapeutics”. Journal of Cardiovascular Pharmacology. 50 (2): 112–9. doi:10.1097/FJC.0b013e3180986219. PMID 17703127. 
  • Dean RG, Burrell LM (). „ACE2 and diabetic complications”. Current Pharmaceutical Design. 13 (26): 2730–5. doi:10.2174/138161207781662876. PMID 17897017. 
  • Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ (). „A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase”. The Journal of Biological Chemistry. 275 (43): 33238–43. doi:10.1074/jbc.M002615200. PMID 10924499. 
  • Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, Donovan M, Woolf B, Robison K, Jeyaseelan R, Breitbart RE, Acton S (). „A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9”. Circulation Research. 87 (5): E1–9. doi:10.1161/01.res.87.5.e1. PMID 10969042. 
  • Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J, Godbout K, Parsons T, Baronas E, Hsieh F, Acton S, Patane M, Nichols A, Tummino P (). „Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase”. The Journal of Biological Chemistry. 277 (17): 14838–43. doi:10.1074/jbc.M200581200. PMID 11815627. 
  • Crackower MA, Sarao R, Oudit GY, Yagil C, Kozieradzki I, Scanga SE, Oliveira-dos-Santos AJ, da Costa J, Zhang L, Pei Y, Scholey J, Ferrario CM, Manoukian AS, Chappell MC, Backx PH, Yagil Y, Penninger JM (). „Angiotensin-converting enzyme 2 is an essential regulator of heart function”. Nature. 417 (6891): 822–8. Bibcode:2002Natur.417..822C. doi:10.1038/nature00786. PMID 12075344. 
  • Harmer D, Gilbert M, Borman R, Clark KL (). „Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme”. FEBS Letters. 532 (1–2): 107–10. doi:10.1016/S0014-5793(02)03640-2. PMID 12459472. 
  • Donoghue M, Wakimoto H, Maguire CT, Acton S, Hales P, Stagliano N, Fairchild-Huntress V, Xu J, Lorenz JN, Kadambi V, Berul CI, Breitbart RE (). „Heart block, ventricular tachycardia, and sudden death in ACE2 transgenic mice with downregulated connexins”. Journal of Molecular and Cellular Cardiology. 35 (9): 1043–53. doi:10.1016/S0022-2828(03)00177-9. PMID 12967627. 
  • Clark HF, Gurney AL, Abaya E, Baker K, Baldwin D, Brush J, Chen J, Chow B, Chui C, Crowley C, Currell B, Deuel B, Dowd P, Eaton D, Foster J, Grimaldi C, Gu Q, Hass PE, Heldens S, Huang A, Kim HS, Klimowski L, Jin Y, Johnson S, Lee J, Lewis L, Liao D, Mark M, Robbie E, Sanchez C, Schoenfeld J, Seshagiri S, Simmons L, Singh J, Smith V, Stinson J, Vagts A, Vandlen R, Watanabe C, Wieand D, Woods K, Xie MH, Yansura D, Yi S, Yu G, Yuan J, Zhang M, Zhang Z, Goddard A, Wood WI, Godowski P, Gray A (). „The secreted protein discovery initiative (SPDI), a large-scale effort to identify novel human secreted and transmembrane proteins: a bioinformatics assessment”. Genome Research. 13 (10): 2265–70. doi:10.1101/gr.1293003. PMC 403697Accesibil gratuit. PMID 12975309. 
  • Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M (). „Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus”. Nature. 426 (6965): 450–4. Bibcode:2003Natur.426..450L. doi:10.1038/nature02145. PMID 14647384. 
  • Wong SK, Li W, Moore MJ, Choe H, Farzan M (). „A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2”. The Journal of Biological Chemistry. 279 (5): 3197–201. doi:10.1074/jbc.C300520200. PMID 14670965. 
  • Towler P, Staker B, Prasad SG, Menon S, Tang J, Parsons T, Ryan D, Fisher M, Williams D, Dales NA, Patane MA, Pantoliano MW (). „ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis”. The Journal of Biological Chemistry. 279 (17): 17996–8007. doi:10.1074/jbc.M311191200. PMID 14754895.