Sari la conținut

Ortoplex

De la Wikipedia, enciclopedia liberă
(Redirecționat de la Hiperoctaedru)
Ortoplexuri în 2 până la 5 dimensiuni
2 dimensiuni
pătrat
3 dimensiuni
octaedru
4 dimensiuni
4-ortoplex
5 dimensiuni
5-ortoplex

În geometrie, un ortoplex[1] (plural ortoplexuri), hiperoctaedru sau cocub este un politop regulat, convex n-dimensional. Un ortoplex 2-dimensional este un pătrat, un ortoplex 3-dimensional este un octaedru regulat, iar un ortoplex 4-dimensional este un 4-ortoplex (sau 16-celule). Fațetele sunt simplexuri în dimensiunea imediat inferioară, în timp ce figurile vârfurilor sunt alte ortoplexuri, din dimensiunile anterioare.

Vârfurile unui ortoplex pot fi alese ca versori orientați de-a lungul fiecărei axe de coordonate, adică toate permutările a (±1, 0, 0, …, 0). Ortoplexul este anvelopa convexă a vârfurilor. Ortoplexul n-dimensional poate fi definit de asemenea ca o Sferă unitate (sau, după unii autori doar frontierele sale) în spații normate în Rn:

Într-o singură dimensiune ortoplexul este un simplu segment [−1, +1], în două dimensiuni este un pătrat (sau romb) cu vârfurile {(±1, 0), (0, ±1)}. În trei dimensiuni este un octaedru — unul din cele cinci corpuri poliedre regulate convexe. Seria poate fi generalizată în dimensiuni suplimentare printr-un n-ortoplex construit ca o n-piramidă dublă având baza un (n−1)-ortoplex.

Ortoplexul este politopul dual al hipercubului. 1-scheletul unui ortoplex n-dimensional este un graf Turán⁠(d) T(2n,n).

În 4 dimensiuni

[modificare | modificare sursă]

Ortoplexul 4-dimensional este numit și 16-celule. Este unul dintre cele șase 4-politopuri convexe⁠(d) regulate. Aceste 4-politopuri au fost descrise pentru prima dată de Ludwig Schläfli la mijlocul secolului al XIX-lea.

În dimensiuni superioare

[modificare | modificare sursă]

Familia ortoplexurilor este una din cele trei familii de politopuri regulate, notate de H.S.M. Coxeter cu βn, celelalte două fiind simplexurile, notate de el cu αn, și hipercuburile, notate de el cu γn. A patra familie, fagurii hipercubici a fost notată de el cu δn.[2]

Ortoplexul n-dimensional are 2n vârfuri, and 2n fețe (componente n–1 dimensionale) toate fiind n–1 simplexuri. figurile vârfurilor sunt toate (n−1)- ortoplexuri. Simbolurile Schläfli ale ortoplexurilor sunt {3,3,...,3,4}.

Unghiurile diedre ale unui ortoplex n-dimensional este . Asta dă: δ2 = arccos(0/2) = 90°, δ3 = arccos(-1/3) = 109.47°, δ4 = arccos(-2/4) = 120°, δ5 = arccos(-3/5) = 126.87°, ... δ = arccos(-1) = 180°.

Volumul unui ortoplex n-dimensional este

Pentru fiecare pereche de vârfuri care nu sunt opuse există o latură care le unește. Mai general, orice mulțime de vârfuri k+1 ortogonale corespunde unui component distinct k-dimensional care le conține. Numărul componentelor k-dimensionale (vârfuri, laturi, fețe, ..., fațete) dintr-un ortoplex n-dimensional este dat de (v. coeficient binomial):

[3]

Sunt posibile mai multe proiecții ortogonale care prezintă ortoplexurile sub formă de grafuri 2-dimensionale. Poligoanele Petrie proiectează punctele într-un 2n-gon regulat sau în alte poligoane regulate de ordin inferior. O a doua proiecție ia 2(n−1)- gonul Petrie de dimensiunea inferioară, a se vedea bipiramida, proiectată în direcția axei, cu cele două vârfuri plasate în centru.

Elementele ortoplexurilor
n βn
k11
Nume
Graf
Graf
2n-gon
Simbol Schläfli Diagramă Coxeter-Dynkin 0-fețe
Vârfuri
1-fețe
Laturi
2-fețe
Fețe
3-fețe
Celule
4-fețe 5-fețe 6-fețe 7-fețe 8-fețe 9-fețe 10-fețe
0 β0 Punct
0-ortoplex
. ( )
1                    
1 β1 Segment
1-ortoplex
{ }
2 1                  
2 β2
−111
Pătrat
2-ortoplex
{4}
2{ } = { }+{ }

4 4 1                
3 β3
011
octaedru
3-ortoplex
{3,4}
{31,1}
3{ }


6 12 8 1              
4 β4
111
16-celule
4-ortoplex
{3,3,4}
{3,31,1}
4{ }


8 24 32 16 1            
5 β5
211
5-ortoplex {33,4}
{3,3,31,1}
5{ }


10 40 80 80 32 1          
6 β6
311
6-ortoplex {34,4}
{33,31,1}
6{ }


12 60 160 240 192 64 1        
7 β7
411
7-ortoplex {35,4}
{34,31,1}
7{ }


14 84 280 560 672 448 128 1      
8 β8
511
8-ortoplex {36,4}
{35,31,1}
8{ }


16 112 448 1120 1792 1792 1024 256 1    
9 β9
611
9-ortoplex {37,4}
{36,31,1}
9{ }


18 144 672 2016 4032 5376 4608 2304 512 1  
10 β10
711
10-ortoplex {38,4}
{37,31,1}
10{ }


20 180 960 3360 8064 13440 15360 11520 5120 1024 1
...
n βn
k11
n-ortoplex {3n − 2,4}
{3n − 3,31,1}
n{}
...
...
...
2n 0-fețe, ... k-fețe ..., 2n (n−1)-fețe

Vârfurile aliniate pe axa ortoplexlui sunt la distanțe egale de celelalte vârfuri. Conjectura Kusner afirmă că această mulțime de 2d puncte este cea mai mare posibilă pentru acestă distanță.[4]

Ortoplexuri generalizate

[modificare | modificare sursă]

Politopurile complexe⁠(d) regulate, numite și ortoplexuri generalizate, pot fi definite în spațiul Hilbert complex, βp
n
= 2{3}2{3}...2{4}p, sau . Există soluții reale pentru p = 2, de exemplu β2
n
 = βn = 2{3}2{3}...2{4}2 = {3,3,..,4}. Pentru p > 2 ele există în . Un p-generalizat n-ortoplex are pn vârfuri. Ortoplexurile generalizate au simplexuri (reale) ca fațete.[5] Ortoplexurile generalizate produc grafuri multipartite⁠(d), βp
2
produce Kp,p pentru un graf bipartit complet, βp
3
produce Kp,p,p pentru grafuri tripartite complete. βp
n
produce Kpn. Se poate face o proiecție ortogonală care arată toate vârfurile egal distanțate pe un cerc, cu toate perechile de vârfuri conectate, cu exccepția multiplilor de n. Poligonul regulat de pe perimetrul acestor proiecții ortogonale este numit poligon Petrie.

Ortoplexuri generalizate
p=2 p=3 p=4 p=5 p=6 p=7 p=8

2{4}2 = {4} =
K2,2

2{4}3 =
K3,3

2{4}4 =
K4,4

2{4}5 =
K5,5

2{4}6 =
K6,6

2{4}7 =
K7,7

2{4}8 =
K8,8

2{3}2{4}2 = {3,4} =
K2,2,2

2{3}2{4}3 =
K3,3,3

2{3}2{4}4 =
K4,4,4

2{3}2{4}5 =
K5,5,5

2{3}2{4}6 =
K6,6,6

2{3}2{4}7 =
K7,7,7

2{3}2{4}8 =
K8,8,8

2{3}2{3}2
{3,3,4} =
K2,2,2,2

2{3}2{3}2{4}3

K3,3,3,3

2{3}2{3}2{4}4

K4,4,4,4

2{3}2{3}2{4}5

K5,5,5,5

2{3}2{3}2{4}6

K6,6,6,6

2{3}2{3}2{4}7

K7,7,7,7

2{3}2{3}2{4}8

K8,8,8,8

2{3}2{3}2{3}2{4}2
{3,3,3,4} =
K2,2,2,2,2

2{3}2{3}2{3}2{4}3

K3,3,3,3,3

2{3}2{3}2{3}2{4}4

K4,4,4,4,4

2{3}2{3}2{3}2{4}5

K5,5,5,5,5

2{3}2{3}2{3}2{4}6

K6,6,6,6,6

2{3}2{3}2{3}2{4}7

K7,7,7,7,7

2{3}2{3}2{3}2{4}8

K8,8,8,8,8

2{3}2{3}2{3}2{3}2{4}2
{3,3,3,3,4} =
K2,2,2,2,2,2

2{3}2{3}2{3}2{3}2{4}3

K3,3,3,3,3,3

2{3}2{3}2{3}2{3}2{4}4

K4,4,4,4,4,4

2{3}2{3}2{3}2{3}2{4}5

K5,5,5,5,5,5

2{3}2{3}2{3}2{3}2{4}6

K6,6,6,6,6,6

2{3}2{3}2{3}2{3}2{4}7

K7,7,7,7,7,7

2{3}2{3}2{3}2{3}2{4}8

K8,8,8,8,8,8

Familii de politopuri conexe

[modificare | modificare sursă]

Ortoplexurile se pot combina cu hipercuburile lor duale pentru a forma politopuri compuse:

  1. ^ Conway îl numește „n-ortoplex” de la ortant⁠(d) complex
  2. ^ Coxeter 1973, pp. 120-124, §7.2.
  3. ^ Coxeter 1973, p. 121, §7.2.2..
  4. ^ en Guy, Richard K. (), „An olla-podrida of open problems, often oddly posed”, American Mathematical Monthly, 90 (3): 196–200, doi:10.2307/2975549, JSTOR 2975549 .
  5. ^ en Coxeter, Regular Complex Polytopes, p. 108
  • Coxeter, H.S.M. (). Regular Polytopes (ed. 3rd). New York: Dover. 
    • pp. 121-122, §7.21. see illustration Fig 7.2B
    • p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)

Legături externe

[modificare | modificare sursă]
 v  d  m Politopuri regulate și uniforme convexe fundamentale în dimensiunile 2–10
Familie An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Poligoane regulate Triunghi Pătrat p-gon Hexagon Pentagon
Poliedre uniforme Tetraedru OctaedruCub Semicub DodecaedruIcosaedru
4-politopuri uniforme 5-celule 16-celuleTesseract Semitesseract 24-celule 120-celule600-celule
5-politopuri uniforme 5-simplex 5-ortoplex5-cub 5-semicub
6-politopuri uniforme 6-simplex 6-ortoplex6-cub 6-semicub 122221
7-politopuri uniforme 7-simplex 7-ortoplex7-cub 7-semicub 132231321
8-politopuri uniforme 8-simplex 8-ortoplex8-cub 8-semicub 142241421
9-politopuri uniforme 9-simplex 9-ortoplex9-cub 9-semicub
10-politopuri uniforme 10-simplex 10-ortoplex10-cub 10-semicub
n-politopuri uniforme n-simplex n-ortoplexn-cub n-semicub 1k22k1k21 n-politop pentagonal
Topicuri: Familii de politopuriPolitop regulat