Relație de ordine totală
Aspect
O relație de ordine totală, numită și ordine liniară, este o relație de ordine având proprietatea suplimentară că orice două elemente sunt comparabile.
Definiție formală
[modificare | modificare sursă]O relație binară pe o mulțime A este numită ordine totală dacă îndeplinește simultan condițiile:
- , dacă și , atunci (antisimetrie)
- , dacă și , atunci (tranzitivitate)
- , are loc sau , (relația este totală)
De notat că, aplicând condiția 3 pentru x=y, rezultă (reflexivitatea).
Exemple notabile
[modificare | modificare sursă]- Relația obișnuită de ordine între numerele naturale este o relație de ordine totală (mai mult, este bună ordonare). Tipul acestei relații se notează cu ω. (Două relații se spune că au același tip dacă sunt izomorfe.)
- Relația obișnuită de ordine între numerele întregi.
- Relația obișnuită de ordine între numerele întregi negative. Tipul acesteia se notează cu
- Relația de ordine între numerele raționale. Aceasta este o ordine densă, în sensul că între oricare două numere raționale distincte există un număr rațional distinct față de acestea. Tipul de ordine al mulțimii numerelor reale se notează η.
- Relația de ordine între numerele reale. Aceasta este o ordine continuă, în sensul că, dacă A și B sunt două mulțimi de numere reale, având proprietatea că , atunci există un număr real c cu proprietatea că . Tipul de ordine al mulțimii numerelor reale se notează λ.
În schimb, următoarele relații de ordine nu sunt totale:
- relația de incluziune între mulțimi
- relația de divizibilitate între numerele naturale
Bibliografie
[modificare | modificare sursă]Kazimierz Kuratowski, Introducere în teoria mulțimilor și în topologie. Traducere, Editura Tehnică, București, 1969.